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Abstract

Implicit les methods employ high-order finite-volume schemes to capture the inviscid cascade

of kinetic energy through the inertial range, and the inherent numerical error acts as an implicit

subgrid model, forming a natural form of les. However, the absence of a physical viscosity

prohibits conventional characterisation of these methods, specifically how kinetic energy is dis-

sipated at the grid scale and how to define a relevant Reynolds number. Kolmogorov’s 1941

papers achieve this characterisation for real-world viscous fluids in terms of a universal equi-

librium range determined uniquely by the rate of energy dissipation and the physical viscosity.

Analogously, this paper proposes than an implicit les method results in behaviour that can be

characterised by a universal equilibrium range determined uniquely by the energy dissipation

rate and the computational cell width. Implicit les simulations of maintained homogeneous

isotropic turbulence and of the Taylor-Green vortex are presented to support this proposal and

highlight similarities and differences with real-world viscous fluids. Direct comparison with data

from high resolution dns calculations provides a basis for deriving an effective viscosity and an

effective Kolmogorov length scale.

1 Introduction

The broad range of time and length scales present in high Reynolds number turbulent flows

is often prohibitively expensive for direct numerical simulations to capture completely, and

various techniques are used to attempt to circumvent this issue. An approach that is receiving

increasing attention is to use a form of large eddy simulation (les) known as implicit les

(iles), where carefully constructed numerical schemes are used such that the inviscid energy

1



cascade is captured accurately and the inherent numerical error emulates the physical effects

of the dynamics at the grid-scale cut-off. The philosophy of this approach was introduced by

Boris et. al. [4], and referred to as Monotone Integrated Large Eddy Simulation (miles), but

has more recently come to encompass a broader range of schemes under the umbrella of iles.

In general, previous works have concentrated on how a particular scheme captures the inertial

subrange of the kinetic energy spectrum, or have given an analytical assessment of the modified

equations of motion. However, an issue that has not been satisfactorily addressed is that in the

absence of a physical viscosity, it is not clear how to characterise a particular flow, e.g. how to

define a Reynolds number; a property that is based on physical viscosity, and not necessarily one

that should extend to an iles calculation. In spite of this issue, this paper proposes a method

for characterising iles calculations, and then for relating the flow to a corresponding real-world

viscous fluid in terms of an effective Kolmogorov length scale and an effective viscosity. An iles

scheme is used to evaluate these proposals and highlight conceptual similarities and differences

between simulated and real-world viscous fluids.

Since turbulence is characterised by high levels of fluctuating vorticity and, therefore, sharp

velocity gradients similar to compressible shocks, iles is motivated by the principles behind

shock-capturing schemes used for compressible flows. Specifically, high-order, non-oscillatory,

finite-volume schemes are particularly well-suited to resolving these features. In the early 90’s,

several authors published successful applications of these types of schemes, e.g. Bell and Mar-

cus [3], Porter et. al. [20] and Youngs [27], but it was Boris [4] who first identified the “convenient

conspiracy”, as it was later dubbed by Oran and Boris [19], specifically that the numerical error

inherent in these schemes acts at the small scales in a similar manner to a subgrid-scale model.

Furthermore, the cell-averaging discretisation of the flow variables can be thought of as an im-

plicit filter. Therefore, these components combine to form a natural form of les, and hence the

name iles.

Fureby and Grinstein [8] and Margolin and Rider [16] explored the implicit subgrid-scale models

analytically (see also Grinstein and Fureby [11]), and it was demonstrated by Ghosal [10] that the

numerical error in les codes can be of a similar order of magnitude to the sgs model, and mask

its effect. It was also shown by Fureby et. al. [9] and Menon et. al. [18] that in certain flows the
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gross-scale features appear to be insensitive to the choice of sgs model, particularly if the spatial

resolution is high enough. Using a ppm-based method, Sytine et. al. [24] and Porter et. al. [21]

showed that it is possible to recover energy spectra with a minus five-thirds decay. Particular

success has been found in free shear flows, where the influence of small-scale viscous dissipation

is small, e.g. Aspden [2], and Fureby and Grinstein [8], and further applications and a more

extensive discussion of the history of the approach can be found in Grinstein and Fureby [12],

Drikakis et. al. [6], and Margolin et. al. [17].

The rest of the paper is organised as follows. In section 2, basic analysis analogous to Kol-

mogorov’s 1941 papers [15] is presented, which is then investigated in section 3 by simulating

two types of flow: maintained homogeneous isotropic turbulence and decaying turbulence in the

context of the Taylor-Green vortex. Finally, the results are discussed in section 4.

2 Theory

An incompressible viscous flow has essentially three parameters, the integral length scale l, the

energy dissipation rate ε, and the fluid viscosity ν. With two units of measure (length and time)

dimensional analysis prescribes that the flow has a single dimensionless parameter, the Reynolds

number

Reε ≡
ε

1

3 l
4

3

ν
.

This definition of the Reynolds number is proportional to the conventional Reynolds number

defined using velocity instead of the dissipation rate; ε is used here for contextual convenience

for turbulence discussions.

The conventional description of turbulence involves a cascade of kinetic energy from large to

small scales where the energy is dissipated by viscosity. It is assumed that the Reynolds number

is sufficiently large for a separation of scales to exist. Kolmogorov’s first similarity hypothesis

states that at scales r ≪ l, the turbulent statistics are of a universal form, determined uniquely

by the energy dissipation rate and the viscosity. This range of scales is known as the universal

equilibrium range. Furthermore, Kolmogorov’s second similarity hypothesis states that for scales
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η ≪ r ≪ l, where

η ≡

(

ν3

ε

)
1

4

(1)

is the Kolmogorov length scale, the statistics are independent of viscosity and so are determined

uniquely by the energy dissipation rate. This range of scales is known as the inertial (sub)range.

The range of scales comparable with the Kolmogorov length scales, where kinetic energy is

dissipated, is known as the dissipation (sub)range.

A key concept is that the energy dissipation rate is independent of the fluid viscosity, and

moreover is determined solely by the large scales, i.e. by geometry or any forcing within the

flow. For a particular fluid, the response to a varying energy dissipation rate is a change in the

Kolmogorov length scale; viscosity essentially determines the length scale at which the energy

is dissipated. Therefore, it should be expected that the large scales and inertial range should

be the same in an iles simulation as in a dns simulation; only the dissipation range should be

expected to differ.

Deriving the kinetic energy equation from the Navier-Stokes equations, the energy dissipation

rate, averaged over a volume V , is found to be of the form

ε = νD, where D =
1

V

∫

u · ∇
2udV ; (2)

D reflects the magnitude of velocity gradients that can be supported within the fluid.

Simple dimensional analysis can be employed to write an expression for the kinetic energy

wavenumber spectrum in the universal equilibrium range,

E(κ) = ε
2

3κ−
5

3ϕν(κη),

where κ is the magnitude of the wavenumber, and ϕν is a (universal) dimensionless function.

In the inertial range, independence from viscosity implies that ϕν must be independent of its

parameter, and must therefore be a (universal) constant, usually written Cκ, known as the

Kolmogorov constant. In the dissipation range, ϕν has been observed to decay exponentially,

both in large-scale experiments by Saddoughi and Veeravalli [22] and in the dns calculations by

Kerr [14].
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A similar approach can be taken to characterise an iles scheme, but the resulting behaviour will

differ from a real viscous fluid, and so will be referred to as an iles fluid. Here, the parameters

that describe the flow are l, ε and ∆x (instead of ν). Dimensional analysis again prescribes a

single dimensionless parameter N = l/∆x, which is crucially independent of ε. Only a change

in resolution can result in a change in behaviour. This issue is how the resolution relates to the

Reynolds number.

To draw the analogy with Kolmogorov’s theory, it is first necessary to assume that the resolution

is sufficiently high. Kolmogorov’s first similarity hypothesis can then be restated such that for

scales r ≪ l, the turbulent statistics are of universal form determined uniquely by ε and ∆x. The

second similarity hypothesis remains unchanged, apart from the range of scales is ∆x≪ r ≪ l.

As before, simple dimensional analysis can be employed to write an expression for the kinetic

energy spectrum in this alternative universal equilibrium range

E(κ) = ε
2

3κ−
5

3ϕi(κ∆x).

In the inertial range, ϕi must be independent of ∆x, and so again must be a constant. Im-

portantly, independence from the details of small-scale energy dissipation suggests that this

constant must be the same as in the viscous case, namely the Kolmogorov constant Cκ; energy

from the large scales is advected inviscidly through the inertial range in the same way in an iles

calculation as in a real-world viscous fluid or dns calculation.

To relate an iles calculation to a viscous flow, simple dimensional analysis and empirical obser-

vations can be used to determine relationships between the parameters available from an iles

calculation, ε and ∆x, and those from a viscous calculation, ε and ν. Specifically, expressions

for an effective Kolmogorov length scale ηe and an effective viscosity νe can be derived in terms

of ∆x and ε. However, this set of parameters is incomplete. There are five parameters, l, ε,

∆x, νe and ηe. The first of the three independent dimensionless quantities has be identified,

N . The remaining two can be written as εη4
e/ν

3
e and ηe/∆x. For consistency with viscous

fluids, the former can taken to be unity; it simply forms a relationship between the two no-

tional measures νe and ηe. The latter needs to be determined empirically, and moreover will

be scheme-dependent. However, it is not clear how to define either ηe or νe in order to make

the measurement. Therefore, an incompleteness arises because there is only one measurable
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quantity that has units involving time. Another measurable quantity must be introduced to be

able to relate an iles fluid to a viscous fluid.

This new quantity should provide the link between the iles and viscous fluids, specifically, the

relation between ∆x and ν, and so should be a common measure to both types of fluid. Also,

it should reflect the effects of small scale energy dissipation. However, there is no reason to

assume that the dissipation range in an iles calculation should be structurally similar to that in

a viscous flow; only the inertial range should be similar. For example, the smallest length scale

in the inertial range does not depend strongly on the structure of the dissipation range, but is a

consequence of viscous dissipation. Since kinetic energy is dissipated due to the numerical error

inherent in the scheme when approximating (velocity) gradients, a measure of the gradients that

are present in a flow is a reasonable choice for the new measure. To mimic the relationship with

a viscous fluid, D can be taken as such a measure. Furthermore, the wavenumber spectrum of

D will be structurally similar to κ2E(κ), where E is the kinetic energy spectrum as a function

wavenumber magnitude κ. Therefore, D will grow with κ1/3 in the inertial range, and decay

exponentially in the dissipation range. Hence, the largest contribution to the integral will come

from length scales around the transition between the inertial and dissipation ranges, and not

depend strongly on the structure of the dissipation range.

With this choice, dimensional analysis suggests that

Πi ≡
ε

1

2

∆xD
3

4

will be a universal constant for a given numerical scheme. In a viscous fluid,

Πν ≡
ε

1

2

ηD
3

4

≡ 1,

and so provides a link between the two types of simulation; an effective Kolmogorov length scale

can be defined as

ηe = Πi∆x, (3)

where Πi is measured empirically. This choice for ηe with the relation νe ≡ ε1/3η
4/3
e builds in

the relation ε = νeD. The effective viscosity νe can then be written in terms of ∆x using (3) as

νe = ε
1

3 Π
4

3

i ∆x
4

3 ,
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highlighting some fundamental differences between a real-world viscous fluid and an iles fluid,

which will be discussed in detail below.

3 Simulations

The numerical code that is used throughout this study is iamr, which was written at the Center

for Computational Sciences and Engineering at the Lawrence Berkeley National Laboratory. It

is an incompressible, variable-density Navier-Stokes solver that is capable of iles calculations.

A finite-volume approach is taken with a two-step predictor-corrector method. The flow vari-

ables are advected by a specialised upwind method before an approximate projection is used to

enforced the divergence-free constraint. The method is second-order accurate in space and time.

Details of the algorithm can be found in Almgren et. al. [1] and the references therein.

The equations of motion are the standard incompressible Navier-Stokes equations,

∇ · u = 0,

∂u

∂t
+ (u · ∇)u = −

1

ρ
∇p+ ν∇2u + F,

where the density, velocity, pressure and viscosity are denoted by ρ, u, p and ν, respectively,

and F is a forcing term to be defined. The viscosity is simply set to zero for iles calculations.

3.1 Maintained Homogeneous Isotopic Turbulence

Simulations were run of homogeneous isotropic turbulence in a triply-periodic unit cube1. To

reduce the detrimental impact of long-range correlations that affect decaying turbulence, a time-

dependent low-wavenumber forcing term was prescribed as

F(x, t) =
∑

|κ|∈[1,3]

ai,j,k cos(fi,j,kt+ ψi,j,k) cos(2πκix+ pi,j,k) cos(2πκjy + qi,j,k) cos(2πκkz + ri,j,k),

for random amplitudes ai,j,k ∈ [0, 1), frequencies fi,j,k ∈ [π, 2π), and phases ψi,j,k, pi,j,k, qi,j,k

and ri,j,k ∈ [0, 2π). The flow was initiated with a low-level low-wavenumber velocity field, and

unit density.

1Throughout this section, the units are arbitrary, and Reynolds numbers will be presented where appropriate.
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Figure 1: Evolution of (a) total kinetic energy E, (b) injection of kinetic energy due to the

forcing term φ, (c) energy dissipation rate ε, and (d) the Laplacian term D. Inviscid and viscous

simulations are denoted by solid and broken lines, respectively, and colour denotes resolution.

Inviscid (iles) simulations were performed at resolutions from 323 to 10243. Viscous simulations

were performed at 2563 (with viscosities of ν = 10−2, 10−3 and 10−4), 5123 (with viscosities of

10−3 and 10−4) and at 10243 (with viscosities of 2.5 × 10−4, and 10−4). Not all of the viscous

simulations were expected to be fully-resolved; evaluating Πν provides a way to establish which

simulations are well-resolved and which are not. Simulations were run until t = 8, except for

the 10243 cases, which were run until times between 3 and 4 due to computational expense.

Figures 1(a-d) show the evolution of the terms in the kinetic energy equation for all of the

simulations; (a) is the total kinetic energy, (b) is the energy injected by the forcing term, (c) is

the actual energy dissipation evaluated according to ε = φ−dE/dt, where φ = (1/V )
∫

u · F dV ,
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Figure 2: (a) Evolution of the dimensionless quantity Πi for the iles simulations. (b) Reynolds

number dependence of Πi. Data shown are for t > 1.2. The best fit is Πi = 0.169Re0.085
ε .

and (d) is D as defined in (2). Inviscid and viscous runs are denoted by solid and broken lines,

respectively, and colour denotes resolution. The flow passes through an initial transient as

the energy cascade begins, the dissipation rate reaches a peak at around t ≈ 1, and shortly

thereafter becomes fully-developed. It is clear from these plots that the forcing term dominates

the flow, but importantly maintains a time-dependent dissipation rate that is independent of

the resolution and viscosity. Figure 1 demonstrates that the resolution and viscosity affect only

the small-scale energy dissipation; it is only the Laplacian term D in figure 1(d) that is affected

by changes in resolution or viscosity. In the most viscous case, the Reynolds number is too low

for a sufficient separation of scales, and both the initial transient and the late-time evolution

are heavily damped.

Figure 2(a) shows the evolution of the dimensionless quantity Πi for the iles simulations. For

the resolutions presented here, the effective Kolmogorov length scale, defined in (3), is between

about one quarter and one third of a computational cell width, which is much smaller than

would be required for a well-resolved dns calculation.

In each simulation, the value of Πi becomes approximately constant once the flow has become

well-developed, but there is a slight dependency on the resolution. In the dimensional analysis

presented above, Reynolds number dependence was discounted relying on Kolmogorov’s first

similarity hypothesis. Figure 2(b) considers the dependence of Πi on the effective Reynolds
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Figure 3: Evolution of the dimensionless quantity Πν . Πν ≈ 1 corresponds to a well-resolved

viscous calculation, and Πν > 1 denotes lack of resolution.

number, which has been defined as (2) but using the measured effective viscosity. The solid

black line is a best fit to the power law Πi = 0.169Re0.085
ε , demonstrating that there is in fact a

very weak dependence of Πi on the Reynolds number. Since the Reynolds number can be written

as Re ≡ Π
−4/3
i N4/3, the expression for Πi can be stated equivalently in terms of resolution as

Πi = 0.203N0.102, where N is the number of cells across the integral length scale.

The source of this dependency is not clear, but two possible influences have been discounted: the

numerical slope limiting used to preserve monotonicity, and the use of a large scale forcing term.

The simulations were run without utilising slope limiting, but this only resulted in a slightly

smaller values for Πi, the Reynolds number dependency remained. The decaying simulations in

the next section will also be shown to possess a similar degree of dependency, discounting the

forcing term.

It may be the case that the Reynolds number dependency is just a manifestation of an underlying

limitation in relating an iles simulation to a viscous fluid, which may be related to some other

property of turbulence not considered here, such as intermittency. Recently, Sreenivasan [23]

has argued that the resolution requirements for well-resolved dns calculations grow at a rate

that exceeds the three-quarters that natural scaling suggests, which may be related to the

observations presented here.
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Figure 4: Normalised kinetic energy wavenumber spectra, ε−2/3η−5/3E(κη).

The measure Πν , shown in figure 3, distinguishes the viscous simulations that are well-resolved

(Πν ≈ 1) from those that are not (Πν > 1). The simulations at 2563 with ν = 10−2, 5123 with

ν = 10−3 and 10243 with ν = 2.5 × 10−4 are thought to be well-resolved as the maxima in Πν

after the initial transient are 1.0052, 1.0045, and 1.0054, respectively (some error is expected

due to evaluating the numerical derivatives for the temporal change in the total kinetic energy

and the Laplacian). The simulations at 2563 with ν = 10−3 and 10243 with ν = 10−4 are close,

but not quite fully-resolved, where the maxima in Πν are 1.0145 and 1.0295, respectively. The

other two simulations at ν = 10−4 are clearly not well-resolved.

Using the measured effective Kolmogorov length scales, the kinetic energy spectra can be nor-

malised according to ε−2/3η−5/3E(κη), and are plotted in figure 4; the low Reynolds number dns

simulation has been omitted. The same colour scheme as before has been used, and the dashed

black line shows the theoretical inertial range decay Cκκ
−5/3 with a Kolmogorov constant of

Cκ = 2. Even though iles spectra are not expected to be identical to the viscous spectra, this

normalisation appears to collapse both kinds of spectra in the universal equilibrium range; not

only do the iles spectra collapse to a single profile, that profile does not appear to be too far

11



10
−3

10
−2

10
−1

10
0

10
−2

10
−1

10
0

10
1

Wavenumber normalised by effective Kolmogorov scale

K
in

et
ic

 E
ne

rg
y

32
64
128
256
512
1024

(a)

10
−3

10
−2

10
−1

10
0

10
−2

10
−1

10
0

10
1

Wavenumber normalised by effective Kolmogorov scale

K
in

et
ic

 E
ne

rg
y

256 ν=1e−3
256 ν=1e−4
512 ν=1e−3
512 ν=1e−4
1024 ν=2.5e−4
1024 ν=1e−4

(b)

0 0.2 0.4 0.6 0.8 1 1.2
10

−2

10
−1

10
0

10
1

Wavenumber normalised by effective Kolmogorov scale

K
in

et
ic

 E
ne

rg
y

32
64
128
256
512
1024
exp(−β κ η)

(c)

0 0.2 0.4 0.6 0.8 1 1.2
10

−2

10
−1

10
0

10
1

Wavenumber normalised by effective Kolmogorov scale

K
in

et
ic

 E
ne

rg
y

256 ν=1e−3
256 ν=1e−3
512 ν=1e−3
512 ν=1e−4
1024 ν=2.5e−4
1024 ν=1e−4
exp(−β κ η)

(d)

Figure 5: Compensated kinetic energy wavenumber spectra, normalised according to

ε−2/3κ5/3E(κη). Inviscid spectra are shown in (a) and (c), and viscous spectra in (b) and

(d). The inertial range is highlighted by logarithmic plots in (a) and (b) (the two black lines

denote the range of values found in the literature for the Kolmogorov constant, i.e. 1.2 to 2),

and the dissipation range is highlighted by semilogarithmic plots in (c) and (d).
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Figure 6: (a) Evolution of the effective viscosity νe, for both the inviscid and viscous simulations;

note that the effective viscosity of the under-resolved viscous simulations does not agree with

the specified viscosity. (b) Evolution of the Taylor Reynolds number.

removed from the viscous profile. In particular, it should be noted that the iles spectra have a

much shorter dissipation range compared with the viscous spectra; in the viscous simulations it

is necessary to dedicate a significantly higher proportion of resolution to the dissipation range.

Consequently, at the other end of the spectra, the iles simulations have inertial ranges that ex-

tend to smaller wavenumbers than the viscous spectra, suggestive of higher Reynolds numbers.

This behaviour can be seem more clearly in the compensated spectra, plotted in figure 5(a,b).

Here, another difference between the two types of spectra can be discerned; the dip around

κη ≈ 0.05 appears to be slightly greater in the iles case. Figure 5(c,d) plots the compensated

spectra semilogarithmically to consider exponential decay in the dissipation range. The dashed

black line is A exp(−βκη), with A = 6.5 and β = 5.2, taken from the dns simulations of Kerr [14]

and the boundary-layer experiments of Saddoughi and Veeravalli [22], with which the viscous

simulations are in very close agreement. The iles simulations, however, present slightly different

behaviour; there is a range with steeper decay followed by a flattening near the grid-scale. In

summary, there are identifiable differences between the equilibrium ranges of iles and viscous

spectra, but these differences are not sufficient to disrupt the collapse presented in figure 4, at

least for the numerical scheme considered here. The scheme captures an inertial range close to

the Kolmogorov constant, and the effective Kolmogorov length scale permits a normalisation

that collapses the spectra to an equilibrium range that is universal for the scheme, and close to
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Figure 7: Examination of the dimensionless dependence of the effective viscosity on the specified

viscosity in under-resolved viscous simulations, νe/ν∆x = f (νu/ν∆x).

that of a real viscous fluid.

Figure 6(a) shows the evolution of the effective viscosity. The same measure is used in both the

viscous and inviscid cases; the actual viscosity is not used explicitly, and so provides another

measure of how well resolved the viscous calculations are. The vertical dashed line shows t =

2.57, which corresponds to the time at which the spectra are plotted in figures 4-5. A key point

to note here is that the extent to which the inertial range of each spectrum extends to low

wavenumbers (figure 4) corresponds directly to the effective viscosity at the time shown by the

vertical dashed line (figure 6a). As Reynolds number increases, a larger inertial range is observed

due to the greater separation of scales, so since all other quantities are approximately equal,

the Reynolds number is represented by the effective viscosity, which follows exactly the same

trend as the energy spectra at large scales. This suggests that the effective viscosity that has

been derived is an accurate representation of the flow; if an iles simulation and a viscous fluid

have inertial ranges that extend over the same range of wavenumbers, then the method outlined

above provides a way of deriving the effective viscosity of the iles fluid corresponding to the

true viscosity of the real fluid. The resulting effective Taylor Reynolds numbers are plotted in

figure 6(b), where

Reλ =
ûλ

νe
for λ2 =

15νeû
2

ε
,

where û is the rms velocity.
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To extend the characterisation to the situation of an under-resolved viscous calculation, there are

three measures of viscosity that need to be considered; the specified (under-resolved) viscosity

νu, the effective viscosity for an inviscid simulation at that resolution ν∆x, and the resulting

effective viscosity νe. Dimensional considerations suggest a functional dependence of the form

νe

ν∆x
= f

(

νu

ν∆x

)

, (4)

for some dimensionless function f , where f(x) → 1 as x→ 0, and f(x) → x as x→ ∞.

To investigate this dependence, a variety of under-resolved simulations were run in addition to

those already presented, the results of which are shown in figure 7. For each simulation, the

marker denotes the time t = 2.57, and the surrounding points shows time dependence. The

dotted line shows f(x) = 1 (the inviscid limit), the dashed line is f(x) = x (the well-resolved

viscous limit), and the solid black line is the heuristic candidate function

f(x) = x+ exp(−bx),

which naturally satisfies the restrictions on (4). The value of b shown here is 1/2. There is

clear agreement for all simulations, which suggests that an a priori prediction for the effective

viscosity of an under-resolved viscous calculation using this scheme can be written as

νe = νu + ν∆x exp

(

−
1

2

νu

ν∆x

)

.

3.2 The Taylor-Green Vortex

The Taylor-Green vortex [25] has become a popular test case for many advocates of iles methods,

see the recent studies of Drikakis et. al. [6] and Hickel et. al. [13], and so has been investigated

here. Following [6], the domain used was a triply-periodic cube of length 2π. The velocity field

was initialised according to

u0(x) = u0













cos(kx) sin(ky) cos(kz)

− sin(kx) cos(ky) cos(kz)

0













,

where k = 1. The inherent symmetry of the problem can be exploited by using reflective

boundary conditions to reduce the domain size by a factor of 8. Simulations were run at effective
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Figure 8: Evolution of the terms in the kinetic energy equation for the Taylor-Green vortex:

(a,b) total kinetic energy, (c) temporal change in kinetic energy, (d) Laplacian term D. The

solid lines are the inviscid calculations and the dash-dotted lines are the viscous calculations.

resolutions of 323 to 20483. Viscous simulations were run at an effective resolution of 5123, at

Reynolds numbers of approximately 120, 1200, 3000, and 12000, where the Reynolds number is

defined to be Re = u0/kν, corresponding to the initial conditions; as with the previous section,

this range of Reynolds numbers span the range from under-resolved at this resolution to too

viscous for a separation of scales. Throughout this section velocities will be non-dimensionalised

by u0 and lengths by k−1.

Figure 8(a,b) show the evolution of the normalised total kinetic energy, (c) shows the temporal

derivative of the kinetic energy, and (d) shows the Laplacian term D. At early times, kinetic

energy is conserved (in the inviscid and high Reynolds number cases), then as the cascade process

begins, a growth in the Laplacian term is observed along with a corresponding decay in kinetic
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Figure 9: (a) Evolution of the dimensionless parameters Πi. (b) Dependence of Πi on Reε. Data

shown are for t > 12. Solid black line denotes best fit, Πi = 0.152Re0.087
ε . Dashed black line is

the best fit from the previous section.

energy. The energy dissipation rate reaches a peak at around dimensionless time t ≈ 9, and the

late-time energy decay follows t−2, characteristic of the Taylor-Green vortex. The most viscous

case prevents transition to turbulence, and the vortex spins down at a rate that can be seen to

be faster than t−2 at late times.

In the iles results of Drikakis et. al. [6] and the dns results of Brachet [5] at a Reynolds number

of 5000, the energy dissipation is observed to peak at a value around 0.016, and it is suggested

in Frisch [7], for example, that a limit independent of Reynolds number is being approached.

However, the peak energy dissipation in the 10243 case presented in figure 8(c) is approximately

25% higher, and so suggests that much higher Reynolds numbers will be needed to draw any

definitive conclusions. The simulation at 20483 does not attain a peak as high as the 10243 case.

This is because the Taylor-Green vortex is extremely sensitive to shear instabilities, which are

damped at lower resolutions.

Figure 9(a) shows the dimensionless quantity Πi. There is a slightly greater variability in the

value of Πi for each simulation than there was for the simulations in the previous section, and

again there is a dependence on resolution. Figure 9(b) shows the Reynolds number dependency

of Πi for each simulation. The solid black line denotes the best fit to the data, which is of the

form Πi = 0.152Re0.087
ε . The dashed black line shows the best fit from the simulations from the
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Figure 10: (a) Evolution of the dimensionless parameter Πν . (b) Evolution of the effective

viscosity νe.

previous section, which has a similar power-law growth, but a slightly higher coefficient.

Figure 10 shows the dimensionless quantity Πν (a), and the effective viscosities (b). The least

viscous case is clearly identified as being under-resolved, but because the flow is decaying, the

simulation approaches the well-resolved limit at late times. The Re = 3000 case appears to be

marginally under-resolved, but the other two viscous cases appear to be well-resolved.

Figure 11 shows the kinetic energy spectra, normalised as before using the effective Kolmogorov

length scale and energy dissipation rate, along with reference spectra from the maintained ho-

mogeneous isotropic turbulence simulations from the previous section, specifically the inviscid

simulation at 10243 and the well-resolved viscous simulation at 5123 with ν = 10−3; the dashed

black line denotes Cκκ
−5/3, with Cκ = 2. The low wavenumber peak is a signature of the

Taylor-Green vortex, due to the initial conditions. Again, the normalisation collapses the data

well, not only the viscous and inviscid simulations, but also the maintained and decaying flows;

a universal equilibrium range is indeed recovered in these iles simulations, and appears to be

similar to that recovered in a viscous fluid.

Compensated spectra are shown in figures 12(a,b) for two different times: (a) is at t ≈ 16.4, the

latest time that the highest resolution case was run, and (b) is at t ≈ 50. At the first time, the

compensated spectra demonstrate that the decay is close to minus-five thirds, but the later time

highlights one of the drawbacks of decaying turbulent simulations; without a source of energy
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Figure 11: Kinetic energy wavenumber spectra, ε−2/3η−5/3E(κη), at dimensionless time t ≈ 2.

Two maintained simulations from the previous section (labelled hit) are shown for comparison;

specifically the inviscid simulation at 10243 and the viscous simulation at 5123 with ν = 10−3.

at the large scales, the wavenumbers over which an inertial range can be observed is restricted

and the decay with wavenumber is much smaller. The compensated spectra from the viscous

calculations (not shown) are at Reynolds numbers too low to be able to observe an extensive

inertial range.

A key difference between iles simulations and real-world viscous or dns fluids arises in flows

that are decaying, and is due to the fixed effective Kolmogorov length scale in the iles case. In

a viscous fluid, as the flow decays, the energy dissipation rate drops, and so the Kolmogorov

length scale increases according to (1). This cannot happen in an iles fluid; instead, the effective

viscosity decreases. The consequence of this is that all small-scale structure is removed from the

viscous flow, but high-wavenumber velocity gradients persist in the iles case. This is highlighted

in figure 13, which shows a vertical slice of the magnitude of vorticity at t = 100 for both a

viscous calculation (5123, Re ≈ 3000) and an inviscid calculation (2563); there is structure at
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Figure 12: Compensated kinetic energy wavenumber spectra for the Taylor-Green vortex, nor-

malised according to ε−2/3κ5/3E(κη). (a) t ≈ 16.4, (b) t ≈ 50.

shorter length scales in the inviscid calculation even at a lower resolution.

4 Discussion and Conclusions

In this paper, an approach has been presented for characterising implicit les methods by drawing

an analogy with the characterisation of viscous fluids following Kolmogorov [15]. Specifically,

an iles code can be characterised in terms of an equilibrium range that is universal to that

code, and is determined uniquely by the energy dissipation rate ε, as in a viscous fluid, and the

computational cell width ∆x, which replaces the fluid viscosity as the characteristic measure of

small-scale energy dissipation. Simple dimensional analysis was then employed, arriving at a

dimensionless parameter that was empirically demonstrated to collapse for two quite different

flows and across a substantial range of resolutions, albeit with a slight Reynolds number depen-

dence. Specifically, it was found that Πi = 0.169Re0.085
ε or equivalently Πi = 0.203N0.102, where

N is the number of computational cells across the integral length scale.

To mimic the relationships of viscous fluids, an effective Kolmogorov length scale and effective

viscosity were then defined as ηe = Πi∆x and νe = ε1/3Πi
4/3∆x4/3, which means that the

effective Kolmogorov length scales for the simulations presented here were between one quarter

and one third of a computational cell width.
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Figure 13: Vertical slice showing late-time magnitude of vorticity in an inviscid calculation (left)

and in a viscous calculation (right). It is clear how small-scale structure is removed by viscosity,

but persists in an iles calculation due to the imposed separation of scales.

These measures were used to normalise kinetic energy spectra, and it was demonstrated, by

comparison with well-resolved dns calculations, that an iles flow with an effective viscosity close

to that of a dns calculation had an inertial range that spanned the same range of wavenumbers;

this measure of effective viscosity is an accurate representation of an iles fluid.

Furthermore, under-resolved simulations were investigated, and it was found that a simple ex-

pression could be formulated to predict the effective viscosity a priori:

νe = νu + ν∆x exp

(

−
1

2

νu

ν∆x

)

.

Differences were observed between iles and viscous spectra, both at the high wavenumber end

of the inertial range, and within the dissipation range. These differences were small however,

and only observed under close scrutiny.

A key difference is that the effective viscosity depends on the energy dissipation rate, which is

local in both time and space, and so knowledge of some kind of measure of the dissipation rate

(in whatever average sense applies to the flow) is required. This means that not only does the

effective viscosity vary in time, but can be different at different points in the flow, and even both.
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In a turbulent jet, for example, a higher effective viscosity will be observed along the jet axis

than at the jet edge because of the decreasing dissipation rate with radius, see Townsend [26] for

example. Furthermore, the Reynolds number will increase with streamwise distance, rather than

remain constant as expected in a round jet. In decaying flows, a significant consequence is that

the iles flow cannot undergo relaminarisation; there is no final period of decay. In a decaying

viscous flow, as the energy dissipation rate drops, the Kolmogorov length scale increases as

small-scale structure is removed by viscosity. This cannot happen in an iles fluid; there is an

imposed separation of scales due to the fixed Kolmogorov length scale. The vorticity field will

decay, but cannot become smooth; small-scale structure will persist for all time.

Attention should also be drawn to the fact that the expression for the effective viscosity can be

rewritten in the form νe = ε/D, which has no a priori reason to hold true in an iles flow. It

may be the case that because the scheme is second-order accurate (Margolin et. al. [17] argue

that second-order may be the only suitable way to construct an iles scheme), then D is indeed a

close measure of how energy is removed from the system. Moreover, the wavenumber spectrum

for D will be similar to κ2E(κ), which suggests that the dominant contribution to the integral

is from length scales at the transition between the inertial and dissipation subranges, which lies

within the resolved scales of the iles simulations presented above, and the spectra are observed

to be close those of the viscous calculations. Furthermore, the contribution to the integral is

not dominated by the dissipation scales, which will be scheme-dependent.

This raises the question of how different iles implementations will compare with the results

presented here: should different iles codes produce results that are structurally similar to

those presented here? The parameter Πi is the dimensionally correct scaling to characterise

a scheme, but its value (and any Reynolds number dependence) will vary between different

implementations. For example, it is expected that higher-order schemes will present spectra

that have a compensated spectrum with the peak energy at the bottleneck between the inertial

and dissipation ranges that is greater and at a higher normalised wavenumber compared to

those found here. It may also be observed that the dip in the spectra observed at wavenumbers

smaller than this peak will also be exaggerated. It is anticipated that such schemes will have

smaller values for Πi.
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It has been demonstrated, both here and by many previous authors, that iles methods pro-

vide an effective approach for simulating high Reynolds number turbulent flows, particularly in

regimes where there is a large-scale source of energy that is driving the system (e.g. free shear

or gravitationally driven flows) and where the specific details of energy dissipation (e.g. Prandtl

or Schmidt number effects, or late-time decay) are not the primary concern. Differences be-

tween iles and real-world viscous fluids have been highlighted, but in spite of these differences

a method has been proposed that gives the best characterisation to date of an iles fluid, as an

entity in its own right, and in the context of a viscous fluid.
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